Dance Nypo
Squaring
<details>
<summary>Upute:
</summary>
<img src="https://www.mathkiss.com/uploads/nilski1.png
" width="400"/>
</details>
<h4> Solve :</h4>
<p>(a) Multiply the monomials and simplify the result: \((§§V0(3,7,1)§§x) \cdot (§§V1(4,6,1)§§x^2)\)</p> <p>(b) Expand the product of a monomial and a binomial, and simplify: \(§§V2(2,5,1)§§x \cdot (§§V3(3,6,1)§§x + §§V4(5,8,1)§§)\)</p> <p>(c) Expand and simplify the product of two binomials: \((§§V5(1,4,1)§§x + §§V6(3,7,1)§§)(§§V7(2,5,1)§§x + §§V8(5,9,1)§§)\)</p> <p>(d) Multiply a binomial and a trinomial. Write the expanded and simplified form: \((§§V9(2,6,1)§§x + §§V10(1,3,1)§§)(§§V11(3,8,1)§§x^2 + §§V12(2,5,1)§§x + §§V13(4,7,1)§§)\)</p> <p>(e) Multiply two binomials. Expand and simplify the expression: \((§§V14(2,5,1)§§x - §§V15(3,6,1)§§)(§§V16(1,4,1)§§x + §§V17(4,8,1)§§)\)</p> <p>(f) Square the binomial and simplify: \((§§V18(1,3,1)§§x + §§V19(5,9,1)§§)^2\)</p> <p>(g) Find the product of two binomials and simplify: \((§§V20(2,6,1)§§x - §§V21(3,7,1)§§)(§§V22(1,4,1)§§x - §§V23(6,8,1)§§)\)</p> <p>(h) Multiply a monomial and a trinomial, then simplify the result: \(§§V24(3,7,1)§§x \cdot (§§V25(4,9,1)§§x^2 - §§V26(2,5,1)§§x + §§V27(7,10,1)§§)\)</p> <p>(i) Expand and simplify the product of two binomials: \((§§V28(3,8,1)§§x + §§V29(2,6,1)§§)(§§V30(2,5,1)§§x - §§V31(1,4,1)§§)\)</p> <p>(j) Multiply a trinomial and a binomial. Write the simplified expression: \((§§V32(1,4,1)§§x^2 + §§V33(2,5,1)§§x + §§V34(3,7,1)§§)(§§V35(2,6,1)§§x + §§V36(4,8,1)§§)\)</p>
<br />